• About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop
Symetrics Geophysical and NDT Equipment
  • About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop

Blog

What is UWB?

26/5/2018

 
Ultra-wideband (UWB) signals have been used for decades in geophysical applications. When UWB signals are used in geophysical instruments, the sensor is moved to detect and map underground objects. When used in GSSI’s LifeLocator®, the sensor is stationary to detect motion and breathing characteristics.

UWB signals are generally defined as electromagnetic transmitters whose bandwidth is at least 25% of the nominal center frequency. UWB operates in the time domain; almost all other transmitters operate in the frequency domain.

Geophysical instruments are moved across a surface and transmit very short bursts of electromagnetic energy into the ground. Reflections from buried objects are received at another antenna. This technology can detect targets such as plastic pipes and voids underground, and inside walls and floors. Any change in dielectric property of materials will cause a reflection. Reflections from targets will arrive at different times depending on their distance from the antenna (and will also vary depending on the type of material through which the signal passes).

For LifeLocator®, the transmitted and reflected signals are primarily passing through debris and air. The sensor is stationary and detects moving objects. As with geophysical analysis, the approximate distance of the object causing the reflected signal can be determined by the particular time delay in the signal return. The monitored area may approximate a cone with a beam width of 120 degrees and a range as large as 30 feet. There may be concrete walls or other structures and obstacles in the radiation path.

Total average power is transmitted is ~1% of a cell phone

Working in the time domain, distance to the motion can be measured
​
The reason for using a UWB signal instead of a single frequency transmitter is improved motion resolution, distance measurement and obstacle penetration. Lower frequencies within the transmitted pulse carry further, especially when looking through walls and floors; however, resolution is coarser with lower frequencies. Since the resolution is a function the wavelength of the transmitted signal, higher frequencies will provide finer resolution. In the simplest terms, the wide spectrum of the transmitted signal accommodates most motion and obstacle types. In essence, a maximum number of frequencies are transmitted (both low and high frequencies) with the notion that some frequency will be reflected and sent back to the receiver.

Comments are closed.

    Archives

    March 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    August 2018
    July 2018
    June 2018
    May 2018

    Categories

    All
    Aquatics
    Company News
    Concrete
    Digital Radiography
    Electromagnetic (EM)
    Environmental
    Gold Exploration
    GPS
    Ground Penetrating Radar
    Magnetometers
    Magnetotellurics
    Seismics
    Sonars

    RSS Feed

Location

Terms of Use

All Content © SGNT Symetrics Geophysical and NDT Ltd.
  • About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop