• About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop
Symetrics Geophysical and NDT Equipment
  • About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop

Blog

Crosshole/Downhole Seismic for dynamic soil and rock properties.

20/2/2020

 
The Crosshole Seismic (CS) system and method determine shear and compressional wave velocity versus depth profiles. From these measurements, parameters, such as Poisson’s ratios and moduli, can be easily determined. In addition, the material damping can be determined from CS tests. These dynamic soil and rock properties are often utilized for earthquake design analyses necessary for certain structures, liquefaction potential studies, site development, and dynamic machine foundation design. The most complete version of this downhole system, as manufactured by Olson Instruments, is comprised of a borehole source capable of generating shear and compressional waves and a pair of matching three component triaxial geophone receivers. These instruments are lowered to the same depth in boreholes set at ~ 10 ft (3 m) apart in a line. The instruments are coupled to the side of the grouted borehole inclinometer casing, allowing for the detection of shear and compressional waves as they pass between the receivers.

The Downhole Seismic (DS) investigations are similar to CS investigations, but require only one borehole to provide shear and compressional velocity wave profiles. The DS method uses a hammer source at the surface to impact a wood plank and generate shear and compressional waves. This is typically accomplished by coupling a plank to the ground near the borehole and then impacting the plank in the vertical and horizontal directions. The energy from these impacts is then received by a pair of matching three component geophone receivers, which have been lowered downhole and are spaced 5 to 10 ft (1.5 to 3 m) apart.

Features:
■ Real-time waveform display while testing
■ Thin layers, which are often invisible to surface methods, can be detected with CS/DS investigations
■ Acquisition and processing software are easy to use, yielding fast and accurate results
■ CS method is the most accurate method for determining material properties of rock and soil sites
■ Accuracy and resolution for the CS test method are constant for all test depths, whereas the accuracy and resolution for
the DS surface method decreases with depth
■ Sources and receivers can be oriented with inclinometer casing dummy probes
■ P-SV source used in CS tests can impact in the up, down, and radial directions
■ Correlation between CS and Spectral Analysis of Surface Waves (SASW) tests on soil sites showed that the values from both tests typically compare within a 10-15% difference

The CS investigation requires drilling of two or more (ideally three) boreholes cased with PVC or slope inclinometer casing
for deeper borings up to 328 ft (100 m), and grouted in accordance with ASTM standards to ensure good transmission of wave energy. The boreholes are typically 4-6 inches in diameter cased with 2.32 to 3 inch (59 to 76 mm) I.D. casing. The testing is simplified if inclinometer casing is used rather than normal PVC pipe. Typical distances between adjacent in-line boreholes are on the order of 10 ft (3 m). The testing is performed by lowering both the source and receiver(s) to an investigation depth, firing the source, and recording the energy with the receivers. 

The DS investigation requires drilling a single borehole with similar specifications as listed above, except that only a single grouted 2 inch (50 mm) to 3 inch (76 mm) I.D. PVC casing is needed. The testing is performed by lowering the receiver(s) to an investigation depth, impacting the coupled surface plank, and recording the energy with the receivers.

Elephant Seismology

10/6/2018

 
Picture
​New research out from the journal Current Biology discovered that different movement patterns of elephants (walking stomping, charging) create unique ultra low frequency seismic waves.

​Paired with earlier evidence that elephants are able to detect low energy seismic waves, scientist hypothesize that these self created seismic waves might be used communicate with other elephants up to 6.4 kilometers away!

Listening for elephant vibrations would certainly be one of the more unique use-cases for our Geode Seismograph, but it is totally possible given this research. It only goes to show that there are still many undiscovered use cases for seismographs like our Geode!

Learn More about Seismic Refraction method

27/5/2018

 
Picture

Seismic refraction maps contrasts in seismic velocity – the speed at which seismic energy travels through soil and rock. This parameter typically correlates well with rock hardness and density, which in turn tend to correlate with changes in lithology, degree of fracturing, water content, and weathering.

There are two basic approaches to seismic refraction data analysis: layer-cake and tomographic inversion. The former is the more traditional approach, although tomography has become more popular as faster computers have made it much more feasible than in the past.

Especially in the near-surface, it is not always the case that seismic velocities are divided into high-contrast, discrete layers. Nor is it the case that velocities are constant horizontally. Conventional layer-cake inversion techniques, such as the delay-time method, assume both, and require the geophysicist to provide layer assignments before the data inversion can be completed.

Tomography is less constrained in this sense; it does not “think” in terms of layers, and it better accommodates horizontal velocity variations. If discrete layering is not apparent in the raw data, the tomographic approach is generally more appropriate. As such, Geometrics’ SeisImager Refraction Analysis software offers both options.

Common applications:
  1. Estimating rippability prior to excavation
  2. Mapping depth to bedrock/bedrock topography
  3. Mapping depth to ground water
  4. Calculation of elastic moduli/assessment of rock quality
  5. Mapping thickness of landslides
  6. Identification and mapping of faults

Considerations:
The depth of penetration in a seismic refraction survey is approximately 1/5th of the length of the geophone spread, including offset shots. So if you need to see 10m deep, you will need room to lay out a (minimum) 50m seismic spread, as measured from offset shot to offset shot.

For most engineering refraction work, the best possible source is a 14 or 16lb sledgehammer. A downhole seisgun is not a good refraction source in general, except in cases where the surface is too soft to use a hammer effectively. An accelerated weight drop can be a good source, but is not portable and requires vehicle access to the shot points. Small explosives, such as Kinepak, are ideal when portability is required and the depth of interest is greater than what can be reached with a hammer.

Benefits/Limitations
Seismic refraction requires that velocities increase with depth. A lower velocity layer beneath a higher velocity layer will not be detected by seismic refraction, and will lead to errors in depth calculations. Fortunately, this is a fairly uncommon occurrence in the shallow subsurface.

The seismic source employed must match the desired depth of penetration. For hammer and plate work, the maximum depth you can expect to explore to is about 15-20m; however, this can vary significantly depending on geology, surface conditions, cultural noise, and the person swinging the hammer. Refraction is a relatively broad-brush technique – it looks at gross velocity differences, and you should not expect to be able to map more than 3-4 individual velocity layers.

Cultural noise can be a problem – it is more difficult to conduct a seismic survey in an urban environment than in a rural one. Surveying along busy roadways should be avoided when possible. Shooting at night is sometimes necessary in order to achieve acceptable signal-to-noise ratio in busy areas.
​
​

The final product of a refraction survey is a velocity model, such as the layer-cake inversion shown on the left, or a tomographic inversion as shown below

Picture

    Archives

    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    August 2018
    July 2018
    June 2018
    May 2018

    Categories

    All
    Aquatics
    Company News
    Concrete
    Digital Radiography
    Electromagnetic (EM)
    Gold Exploration
    GPS
    Ground Penetrating Radar
    Magnetometers
    Magnetotellurics
    Seismics
    Sonars

    RSS Feed

Location

Terms of Use

All Content © SGNT Symetrics Geophysical and NDT Ltd.
  • About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop