• About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop
Symetrics Geophysical and NDT Equipment
  • About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop

Blog

Moisture Content in Concrete

23/8/2019

 
​For concrete and cementitious screeds to receive a floorcovering we know that the base must be suitably “dry enough”. This is to prevent damage to the flooring material and to ensure a proper bond with adhesives. So, what is “dry enough” and how long does it take for concrete to reach this goal?

Water is a vital component in the manufacture of concrete and the concrete must be kept moist during the critical curing phase to ensure the intended concrete strength. During the curing phase,  the process of Hydration chemically binds a large portion (approx. 50%) of the water with the cement paste which sets and hardens. What moisture is left after this reaction is either physically bound moisture that is trapped in the pores of the concrete, or what is known as Free Moisture.

This Free Moisture is what must be allowed to evaporate in order to reduce the moisture in the concrete to that acceptable level of “dry enough”. Although a the rule of thumb is to allow an inch per month (or mm per day), a number of factors such as slab depth will greatly influence the drying time. We will briefly look at these.

But to consider how long this will take we first need to establish what measurement can be regarded as “dry enough” and what methods of testing can be used. The simplest and most fool-proof method of testing moisture in concrete and screeds is with an impedance type moisture meter. Impedance type moisture meters commonly provide quantitative measurements (as opposed to qualitative, 0-100 reference readings) and give a very quick and helpful indication of the overall moisture content of the concrete in percentage measurements of moisture content by weight, MC%.
Picture
More and more flooring covering and adhesive manufacturers are specifying the readings with this measurement that suit their products. This makes life very easy for the flooring installer as the test is extremely fast and has a low potential for user error. A common measurement specified by many manufacturers is ≤4% for products which are not designed to be moisture tolerant. Products which have a high moisture tolerance can be specified with readings as high as 6%.

The British Standard Relative Humidity Hood test has been the most relied upon test method for many years and is specified by many UK manufacturers of flooring products. An insulated, impermeable box is affixed to a position on the surface of the slab which has been identified as the highest reading position (with an impedance meter preferably). The box is sealed with butyl tape to a clean, dust free surface and the airspace inside is allowed to equilibrate with the RH within the slab. Equilibration can take anything from 4 hours to 72 hours depending on the slab thickness.

Once equilibrium is established a reading can be taken and compared to a second reading 4 hours later (or 24 hours later in the case of a 72 hour test) and, in most cases, a slab can be considered ‘dry enough’ when a reading of 75% or less is recorded with no change from the  first measurement to the second, although floor covering manufacturers specifications should also be consulted.

(For more detailed instruction see BS5325, BS8201 & BS8203).

The RH Hood test is useful in that it is non-destructive and fairly simple to perform, as long as the steps are followed correctly and the box is not disturbed during the equilibrium period. However, the potential for user error is high, in that the possibility of skewed readings due to temperature change can easily be missed by ignoring the British Standard advice for a follow up test, 4 hours or 24 hours later as mentioned. A solution to this problem may be found by using a data-logging probe.

A commonly asked question is how the RH Hood method and the Moisture Content method correlate and this is a useful point to note: In a laboratory situation where temperature and humidity are constant at say 80%RH & 20ºC , a sample of average quality concrete will eventually equalize at approx. 4% MC. In the field, however, conditions are usually anything but stable and so temperature changes can cause large swings in RH test results and a high ambient RH of over 65% can result in condensation on the surface of the slab, causing higher MC% readings. However, other factors also affect the correlation between RH% and MC%, especially the water-cement (w/c) ratio.
Picture
A sorption Isotherm chart such as the one in Figure 1, provides a helpful indication of the measurements that should be expected so that when readings are far apart from each other and do not correlate as expected, it can be a good indication that one reading could be very wrong and that further investigation is needed. As such, we can see that performing two different tests is worth much more than the sum of their parts. The in-depth Relative Humidity Sleeve Method has been included in British Standards since 2011 and is growing in popularity.

This method is similar to the RH Hood method in that a trapped airspace is allowed to equilibrate with the RH within the slab. This test is destructive, however, involving drilling a hole into the slab to a specified depth of the total thickness, placing a plastic tube (or sleeve) into the cleaned hole and sealing with a plastic cap. Once equilibrium is established a hygrometer probe is placed into the sleeve and given 30 minutes to acclimate before taking a reading.

It is vital, to ensure a proper reading, that the probe is not placed in the hole too early as the heat from the drill will disturb the equilibrium. The benefit of the RH Sleeve method is that the entrapped airspace is much smaller and therefore equilibrium is established much faster than is possible with the RH Hood method. If following probe manufacturers’ instructions, the test can be performed in a shorter period of 24 hours or less in some cases.
Picture
​However, the complication with this test method is sometimes in regard to confusion over the drying goal reading values required. It has been shown that readings taken with the RH Sleeve method can be higher than the RH Hood method, commonly by between 5%-10%. Floor covering manufacturers who specify the in-depth sleeve method will often specify an upper limit of 85% instead of the 75% associated with the RH Hood. See Figure 2.

Having established our “drying goals” and ‘what is dry enough?’, we can now turn back to estimated drying times and the question of ‘how long?’. In concrete construction a large amount of water is initially used in the mix, often ca. 180 litres per cubic meter. This amounts to approx. 10-14% of the total weight of the material, depending on the water-cement (w/c) ratio. As discussed, approx. 50% of this water becomes chemically bound in the curing phase.

The w/c ratio is an important factor affecting the drying time of concrete. The lower the w/c ratio (i.e. less water & more cement) the finer the pores in the pore structure, which in turn reduces the transport velocity of moisture in the concrete and therefore produces a slower rate of drying. However, the lower water content of course also reduces the amount of water that has to evaporate, which should result in an overall shorter drying time. These and other factors are illustrated in the following charts which are interpreted from testing produced by the Swedish Concrete Association.

All drying times listed are to reach a drying goal of 4%MC (Impedance Method), 75%RH (RH Hood Method), and  85%RH (In-depth RH Sleeve Method). Drying time for upper floor, above-grade slabs (drying from both sides) with different thickness and w/c ratios (Days) in normal drying conditions: 60%RH & 18ºC:

    Archives

    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    June 2019
    May 2019
    April 2019
    February 2019
    January 2019
    August 2018
    July 2018
    June 2018
    May 2018

    Categories

    All
    Aquatics
    Company News
    Concrete
    Digital Radiography
    Electromagnetic (EM)
    Gold Exploration
    GPS
    Ground Penetrating Radar
    Magnetometers
    Magnetotellurics
    Seismics
    Sonars

    RSS Feed

Location

Terms of Use

All Content © SGNT Symetrics Geophysical and NDT Ltd.
  • About us
    • Standards and Memberships
    • News
    • Training
    • Technology Explained - GPR
    • Technology Explained - EM
    • Technology Explained - DR
  • Geophysics
  • NDT
  • Security
  • Download
    • Download Resources - Geophysics
    • Download Resources - NDT
  • Blog
  • Contact Us
  • Shop